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A direct optimization method is used to determine the form of the wing which enables the aerodynamic performance to be 
improved for a given lift in the supersonic flow of ideal gas. The flow around the wing and its characteristics are calculated within 
the framework of a model based on Euler's equations. On the basis of a local analysis of the load distribution on the wing, a 
method is proposed for choosing the system of geometric parameters which ensures rapid convergence to the optimum. It is 
shown that one of the parameters of the system (the angle of rotation of the wing panel relative to the central chord) has a very 
slight influence on the aerodynamic characteristics of the wing. @ 1999 Elsevier Science Ltd. All rights reserved. 

When designing wings with optimum characteristics at supersonic flight speeds, the answers to many 
questions may be obtained by using fairly simple flow models, including models based on the linearized 
equations of motion [1, 2]. In particular, it has been shown that a conical deformation of a wing of 
triangular plan form gives a marked increase in aerodynamic performance for a given lift, compared 
with a triaxial deformation, which gives a much smaller increase in aerodynamic performance. More 
precise data may be obtained using the Euler flow model and, in the high supersonic velocity range, 
thin shock layer theory [3, 4]. 

Direct optimization methods, combining methods of computational aerodynamics with numerical 
optimization techniques, seem to be the most promising. In such methods one has to scan a large number 
of versions, so that the demands on the available computer resources are considerable, particularly when 
the number of independent parameters defining the aircraft geometry is large. Nevertheless, direct design 
methods have the important advantage that they enable the design process to be monitored. In some 
cases, basing oneself on the principle of gradually complicating the wing form and monitoring the 
resultant changes in aerodynamic performance, one can determine the class of simplest deformations 
[3]. The efficiency of direct optimization methods may be improved significantly by a proper choice of 
the system of geometrical parameters. 

1. The problem is to determine, at a given Mach number, the lift coefficient Cy the leading-edge sweep 
angle ~ which gives maximum aerodynamic performance K, and the corresponding wing form. We will 
consider a class of infinitesimally thin triangular wings whose surfaces are formed by plane elements 
joined together along rays emanating from the apex. The number of plane elements was varied from 
two to 32. The aerodynamic performance of a wing of Nelements will be denoted byKN. Figure 1 shows 
a wing with eight plane elements. 

The wing surface is deformed in such a way as to preserve the lengths I OA11 = IAIB11 = I BtCt l  = 
I C1Dt I, whereA1, B1, Ct and D1 are the projections of the corner pointsA, B, C and D onto the base 
plane (which coincides with a flat wing). The wing platform is identical with the form of the initial flat 
wing. The surface are around which the gas flows was not required to remain unchanged. Thus, the 
wing geometry is uniquely defined by the vertical displacements hi, h2, h3 and h4 of the points A, B, C 
and D relative to the base plane. It s assumed that a positive increment to the parameters hi, h2, h3 and 
h4 corresponds to leeward displacement of the points. When computing the coefficients of the 
aerodynamic forces, the characteristic area was defined to be that of a flat wing. 

In the case in question, the aerodynamic performance and lift coefficient of the wing are functions 
of the geometric parameters and the angle of attack. Thus, our problem is to maximize a function of 
several variables, subject to an additional condition represented by the equality 

Ks(hi, h2, h3, h4, ct) = max, Cy(hi, h 2, h 3, h4, ct) = const 

where ct is the angle of attack. 
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Fig. 1. 

Since this study is limited to the range of moderate angles of attack, the derivative of the lift coefficient 
with respect to the angle of attack is positive, and for each assignment of values to the geometric 
parameter there is a unique value of cx that guarantees conservation of the lift. One can thus use methods 
approved for problems of unconditional maximization (minimization) of functions of several variables 
in an unbounded domain. 

2. Not one of the numerical optimization techniques used to solve aerodynamic design problems 
enables one completely to avoid the difficulties involved in investigating objective functions of complex 
topography, such as "ravines" and local minima and maxima. Complex topography is often a consequence 
of failure to make allowance for some regularity in a relationship among the variables. Successful solution 
of the optimization problem will therefore depend to a significant degree on the correct selection of 
the parameter system. 

In this paper the maximum aerodynamic performance and the corresponding values of the geometrical 
parameters have been determined by the method of coordinate-wise descent. This method consists of 
the successive determination of the extremal values of the independent variables. The process is repeated 
until it converges to certain optimum values, where further variation of the parameters produces no 
further increase in aerodynamic performance. At the same time, the angle of attack which guarantees 
conservation of the lift coefficient was found by interpolation, based on data obtained by calculating 
the flow around the wing at angles of attack for which the computed values of the lift coefficient 
approximated the given values. 

The method of coordinate-wise descent is easily computerized. However, if the independent variables 
are chosen arbitrarily, the method does not always converge rapidly to an optimum. For the problem 
considered here, we were able to determine a system of geometric parameters, variation of which gave 
a marked acceleration in the convergence of the process. 

The parameter system was chosen on the assumption that the following quantities are small: the 
angle of attack (a ~ 0), the wing deformation (hfl ~ O, hi tg 7ill ~ 0, i = 1, 2 , . . . ,  n, where l in 
the wing length and n = NI2 the number of geometric parameters); we also assumed the validity of 
the "strip" theory, according to which a three-dimensional body is divided into strips by parallel planes 
in the free-stream direction and it is assumed that there is no interaction between the strips. The 
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load on each strip was determined by Ackeret's formula for linearized supersonic flow around a thin 
profile. 

In the case of a wing formed by eight elements, the following equations describe the relation among 
the values of the local angles of attack of the individual elements 

(xt ffi Oh + ((k - l)hk - khk_l)/i, k = 2, 3, 4 

The first element of the wing is that closest to the plane of symmetry and the last is the element 
farthest from the plane of symmetry. The wing length I, which occurs in the equation, is a 
normalizing coefficient for the parameters hi, he, h3 and h4, and may be equated to unity without loss 
of generality. 

The condition of lift conservation readily yields the following relations for the local angles of attack 
as functions of the geometric parameters and the angle of attack co/of a flat wing 

a z  = o~  + ( 2 h  I + 2 h  2 + 2h 3 - 3 h 4 ) / ( 4 / )  

ot 2 = 0 7- + ( -  6/11 + 6h 2 + 2h  3 - 3 h 4 ) / ( 4 / )  

or3 = ff, y + ( 2 h i  - 10h2 + lOh 3 - 3/14)/(4/)  

0.4 = if7"+ (2h  i + 2h  2 - 14h  3 + 9 h 4 ) / ( 4 / )  

Under the assumptions made here, the load on each element of the wing is directly proportional to 
the local angle of attack. Therefore, the direction at which the load on an element increases most rapidly 
is the direction of the gradient of the function of local angle of attack. Conversely: if one moves in a 
direction perpendicular to the gradient, the load on the element remains unchanged. In the case under 
consideration we have the following expressions, accurate to three significant figures, for the gradients 
(per unit length) in the space defined by the geometric parameters (hi, h2, h3, h4) 

gl = (0.436; 0.436; 0.436; - 0.655) 

g2 = (- 0.651; 0.651; 0.217; - 0.325) 

g3 = (0.137; - 0.685; 0.685; - 0.206) 

g4 = (0.118; 0.118; - 0.829; 0.533) 

These four vectors are not linearly independent--as a consequence of the condition of conservation 
of lift--and a unique vector (apart from sign) go = (0.183; 0.365; 0.548; 0.730) orthogonal to each of 
them exists. This vector corresponds to the rotation of the wing panels relative to the central chord. If 
one moves in the direction defined by the vector go, the load on the wing varies only slightly. Thus, we 
have defined a geometric parameter representing the stability of the aerodynamic characteristics of the 
wing. 

In a small neighbourhood of the optimum point, the increment to a sufficiently smooth function is 
usually expressed as a quadratic form 

4 

K s  ( r l  , r2 , r3 , r4 ) - Ks (rjo, r2o, r3o, r4o ) = Y. Ai ( r i - r /o )  2 
i=1 

where r i are the geometric parameters (henceforth we shall call them the basic parameters) and rio are 
their optimum values. In the case of a local or global maximum, the quadratic form is negative definite, 
that is, the coefficients h i are not positive. The problem is to determine a system of basic geometric 
parameters, after which the search for the optimum will be considerably simplified: we need only vary 
each parameter separately. 

One such parameter is the stability of the aerodynamic characteristics. It exerts the least influence 
on the characteristics of the wing and will be taken as the last (in this case, fourth) parameter of 
the system. We propose to determine the other parameters from the following conditions. We first 
establish the optimum load on the wing element nearest the leading edge, then on the next element 
(on the assumption that the load on the already optimized element remains fixed) and so on. Thus, the 
vector of the third parameter of the system must be orthogonal to the vectors go, g3 and g4. The vector 
of the second parameter is orthogonal to go, g4 and the vector of the third parameter. Finally, 
the vector of the first parameter must be orthogonal to the vectors of the second, third and fourth 
parameters. Hence we obtain the following relations among the basic geometric parameters and the 
parameters hi 
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r i =(0.118hl + 0.118h 2 - 0.829h 3 + 0.533h4)/! 
r2 = (0.336ht - 0.892h2 + 0.103h 3 + 0.284h4 )/1 
r3 = (0.916hl + 0.239h2 - 0.1M0h3 + 0.319h4)/1 
r4 = (0.183hi + 0.365h 2 + 0.548h 3 + 0.730h4)/1 

The coefficients in the equations have been chosen in such a way that a unit vector in the space of 
the basic parameters is associated with a vector of length l in the space of the initially chosen 
parameters. 

3. The flow of an ideal gas around the wing is conical and was calculated using the time-convergence 
method with respect to the longitudinal coordinate. The steady equations of motion were written in 
conservative form, so that it was possible to obtain correct information about the density jumps and 
other flow discontinuities without specially monitoring their spatial positions. Euler's equations were 
integrated using McCormack's explicit finite-difference scheme, employing the multi-zone approach 
when constructing the computation mesh [5]. The flow region under investigation was divided into zones, 
similar in shape to quadrilaterals, located above and below the wing. The zone dimensions were chosen 
in such a way that the disturbances of the flow due to the wing did not go beyond the zones. At the 
outer boundaries of the zones, therefore, the given data were the gas-dynamic variables for undisturbed 
flow. At mesh points on the wing surface it was assumed as a boundary condition that the surface was 
impermeable. The well-known principles of reflection were assumed to hold in the plane of symmetry. 

For the optimization computations we used a mesh which, in each of two zones, had 41 mesh-points 
in the direction of the normal to the wing plane and 77 mesh-points in the direction of the normal to 
the plane of symmetry. In addition, 49 mesh-points were placed on each of the lower and upper surfaces 
of the wing panel. To confirm the results, the mesh was refined by factors of two and four (in each 
direction). In the latter case the total number of mesh-points of the computation mesh was approximately 
100,000 in each cross-section. 
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4. The optimization studies were carried out for a wing with a leading-edge sweep angle Z = 60 ° at 
M = 2 and for a wing with angle Z = 75 ° at M = 4. The lift coefficient was Cy = 0.1. In both cases the 
results were qualitatively identical. 

The aerodynamic performance (AP) of a wing consisting of four plane elements depends on two 
parameters, and the relief of the surface thus defined may be represented by level curves (Fig. 2 shows 
the case of a wing with ~ = 75* at M = 4 and Cy = 0.1. The elliptic shape of the level curves indicates 
a trough-shaped relief and confirms the validity of the previous assumption, according to which the 
change in the AP is represented by a quadratic form. Because of the strong elongation of the curves 
and the steep inclination relative to the coordinate axes, convergence of the coordinate-wise descent 
in hi and h2 is slow. However, it is known from previous analysis that the level curves are elongated in 
the direction defined by the geometric stability parameter. One can therefore make a change of variables 
and move in the directions of the basic geometric parameters---r 1 = (-0.894hl + 0.447h2)/l and r2 = 
(0.447hl + 0.894h2)/1, which are practically parallel to the axes of the ellipses. This guarantees rapid 
and precise determination of the optimum. We note that when M = 2 the level curves are even more 
elongated than when M = 4. In that case, coordinate-wise descent in hi and h2 does not guarantee 
convergence to the optimum point and a change of variables becomes unavoidable. 

From a practical point of view, the geometric stability parameter manifests itself in the existence of 
wings which differ considerably in shape but possess the same aerodynamic characteristics. Figure 2 
illustrates wings of the same AP---0.5% less than the maximum AP for this class of wings; however, 
the parameter hi in one wing is positive, while that in the other is negative. 
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The method proposed earlier for constructing a system of basic geometric parameters has also proved 
successful for wings with a larger number of generating elements. Satisfactory convergence to the 
optimum has been achieved in two to four cycles of coordinate-wise descent. 

Figure 3 shows level curves of the AP for a wing consisting of eight flat elements (~ = 75 °, M = 4 
and Cy = 0.1), in the six planes through the optimum point defined by the different pairs of basic 
geometric parameters ri. The level curves are elliptic in shape and slightly inclined to the coordinate 
axes. This indicates rapid convergence of the descent with respect to the basic geometric parameters. 

The successful choice of the system of geometric parameters enables one easily to derive an analytic 
expression for the approximate computation of the AP of a wing of arbitrary form. Processing the results 
of the numerical computation for M = 4 gives the following relation 

1 - Ks/max Ks = 

= 705(r I +0,00712) 2 + 223(r 2 +0,0126) 2 + 18(r s -0,0305) 2 +4(r  4 +0,0242) 2 

It is clear that the parameter whose variation exerts the most influence on the AP is rl, corresponding 
to the load on the wing element adjacent to the leading edge. The AP changes least when the stability 
parameter r4 is varied. In the space of the initially chosen geometric parameters, the AP depends only 
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slightly on the parameter hi, which defines the form of the wing near the plane of symmetry, and strongly 
on h3, which affects the form in the neighbourhood of the leading edge. 

The above relation guarantees satisfactory accuracy when determining the AP over a wide range of 
variation of the geometric parameters. Thus, for a flat wing one has a decrease in 9% of the AP compared 
with the optimum wing. Numerical computation for this case gives a value of 8.1%. 

The principle employed in this paper of gradually complicating the wing form, enabled us to analyse 
the nature of the variation of the AP as a function of the number of plane elements at Cy = 0.1 (Fig. 
4). It is obvious that by simply making the wing V-shaped one obtains practically no increase in the AE. 
This is because in that case only the stability parameter is varied. The largest gain in the AP occurs on 
changing from wings with two plane elements to wings with four elements. Further complication of the 
wing form, that is, a further increase in the number of generating elements, yields a significantly lower 
gain. This implies that, in practice, it is best to use relatively simple wings, consisting of four plane 
elements. In the class of such wings one achieves up to 80% of the maximum gain in AP by surface 
deformation. 

To verify the results, computations were run of the flow around flat and optimum wings (the latter 
consisting of 32 plane elements), using meshes with different numbers of mesh points. In each zone of 
the finest mesh used there were 161 and 305 mesh points in the directions of the normals to the wing 
plane and the plane of symmetry, respectively. In addition, 193 mesh points were positioned on the 
lower and upper sides of the wing bracket. The AP values obtained by extrapolating the results of the 
computation to a mesh of zero diameter (that is, a mesh with infinitely many mesh points) were taken 
as the accurate values. Then the relative increase in the AP by surface deformation was 9.6% for 
M = 2 and 9.3% for M = 4. 

A wing of optimum form is negatively V-shaped (that is, the leading edges of the wing are deflected 
toward the free stream), and the wing panels are convex leeward. The wing deformation is accompanied 
by a redistribution of the pressure both on the surface and in the shock layer. The level curves of the 
pressure, in fractions of the pressure in the undisturbed flow for a flat wing and an optimum one (of 
32 elements), both with ~ -- 75 °, M -- 4, and Cy = 0.1, are shown in Fig. 5. The spatial position of the 
shock wave was not determined with any precision; it was spread out over several adjacent mesh-points. 
In both cases the shock wave was detached from the leading edges. In the neighbourhood of the leading 
edges one observes a fan of rarefaction waves. The flow, accelerating over the wing, slows down in the 
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transverse shock wave. Note that the lift coefficient Cy = 0.1 in the optimum wing is obtained at a larger 
angle of attack than in a flat wing. This is due to the smaller size of the shock layer over a wing of optimum 
form. On the whole, the pressure on the optimum wing is distributed more uniformly over the wing 
span than on a flat wing, in which the neighbourhood of the leading edges is most heavily loaded. There 
is also a general increase in pressure near the plane of symmetry. 
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